Environment

3D nanotech blankets offer new path to clean drinking water

Researchers at The Ohio State University have developed a new material that, by harnessing the power of sunlight, can clear water of dangerous pollutants. Solar fuel systems that use titanium dioxide nanoparticles can cause significant challenges to implementation, including low efficiency and the need for complex filtration systems. So, the researchers added copper to the nanoparticles, and the new structures, called nanomats, can now absorb enough light energy to break down harmful pollutants in air and water.

Contamination detection tool merges synthetic biology and nanotech for ultrasensitive water testing

Researchers at Northwestern University have created a new platform for monitoring chemical contaminants in the environment. The platform can detect the metals lead and cadmium at concentrations down to two and one parts per billion, respectively, in a matter of minutes. It was created by interfacing nanomechanical microcantilevers with synthetic biology biosensors. When the tiny cantilevers are coated with DNA molecules, biosensing molecules bind to the DNA, causing the cantilevers to bend.

Tiny plastic particles can amplify pollutant absorption in plants and intestinal cells

Researchers from Rutgers University, the New Jersey Institute of Technology, the Connecticut Agricultural Experiment Station in New Haven, CT, and the Environmental and Occupational Health Sciences Institute in Piscataway, NJ, have shown that microplastic and nanosplastic particles in soil and water can significantly increase how much toxic chemicals plants and human intestinal cells absorb. Using a cellular model of the human small intestine, the researchers found that nano-size plastic particles increased the absorption of arsenic by nearly six-fold compared with arsenic exposure alone.

Air inside your home may be more polluted than outside due to everyday chemical products

Engineers from Purdue University and GRIMM Aerosol Technik Ainring GmbH & Co. in Germany have found that chemical products from air fresheners, wax melts, floor cleaners, and deodorants can rapidly fill the air with nanoparticles that are small enough to get deep into our lungs. These nanoparticles form when fragrances interact with ozone, which enters buildings through ventilation systems.

Silver nanoparticles in packaging can contaminate dry foods, testing shows

Scientists from the U.S. Food and Drug Administration, Northwestern University, and the Illinois Institute of Technology have found evidence that silver nanoparticles embedded in packaging used as an antimicrobial agent were able to seep into the dry food the packaging is meant to protect. The scientists created samples of silver nanoparticles and embedded them in polyethylene film wraps, which could hold various types of food items. They tested wheat flour, slices of cheese, ground rice, and spinach leaves.

Stormwater pollution sucked up by specialized sponge

Researchers from Northwestern University have defined a method to tailor a sponge that is coated with nanoparticles to specific Chicago pollutants and then to selectively release them. In its first iteration, the sponge platform was made of polyurethane and coated with a substance that attracted oil and repelled water. The newest version is a highly hydrophilic (water-loving) cellulose sponge coated with nanoparticles tailored to other pollutants. The scientists found that by lowering the pH, metals flush out of the sponge.

Scientists discover new behavior of membranes that could lead to unprecedented separations

Until now, scientists believed there was a limit to the sharpness of the separation of solutes in water or other fluids that they could achieve with a porous membrane, not only because of variations in pore size but also because of a phenomenon called hindered transport – the internal resistance of the fluid as a solute tries to go through a pore. Now, researchers from the U.S.

How Lasers and 2D Materials Could Solve the World’s Plastic Problem

Researchers from The University of Texas at Austin, Baylor University, Penn State, the University of California, Berkeley, the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, and Tohoku University in Japan have developed a way to blast the molecules in plastics and other materials with a laser to break them down into their smallest parts for future reuse.

Nanoplastics and ‘forever chemicals’ shown to disrupt molecular structures and functionality

Researchers from The University of Texas at El Paso and the Connecticut Agricultural Experiment Station have shown that nanoplastics and per- and polyfluoroalkyl substances (PFAS) – commonly known as forever chemicals – can alter proteins found in human breast milk and infant formulas. While nanoplastics originate primarily from the degradation of larger plastic materials, like water bottles and food packaging, forever chemicals are found in various products, such as cookware and clothing.