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Research Achievement: The optical properties of two dimensional photonic crystal (PhC) were 

investigated using ferroelectric barium titanate (BTO) thin films. BTO is a promising non-linear 

electro-optic (E-O) material with a high E-O coefficient and fast response time. Beyond its 

application in the optical communication, BTO has the potential to replace current 

semiconductor processors, which are limited by their speed and high energy consumption. To 

utilize BTO as a micron scale device for their enhancement of E-O coefficient is required. This 

can be achieved by using “slow light” effects observed in PhC structures. In this project the PhC 

structure was fabricated by ion milling using a dual beam focused ion beam (FIB). Because BTO 

is a chemically inert and mechanically hard material, conventional wet etching is not practicable 

for its nano patterning.  

  Highly uniformed PhC structures were fabricated and imaged by scanning electron microscopy 

(SEM). Fig. 1 (a) shows the top surface of a PhC consisting of a square array of air holes. The 

lattice constant is 450 nm. The black circles are the milled air holes and the gray area is the BTO 

dielectric stack. From the cross sectional view in Fig. 1 (b), the hole depth from is 450 nm where 

the hole diameter at the opening is 250 nm and 220 nm at the bottom. Hence an aspect ratio 

greater than two is achieved. The hole is slightly wider at the opening due to the ion beam having 

a Gaussian beam profile. Nevertheless there is minimal stigmatism in the focused ion beam 

optics since there is no distortion of the circular air hole. The photonic band structure of 

fabricated PhC shown in Fig. 1 (c) is calculated by 2-D finite difference time domain (FDTD) 

method. The vertical green lines indicate the photonic band gaps at X and M points. The 

calculation is along the Г-X and M- Г which are <1 0> and <1 1> directions in k space, 

respectively. From Fig. 1 (c) the gap is wider at the X point than the M point. The broad band 

gaps tell the BTO PhC has a broad bandwidth which is attributed to the high refractive index 

contrast between BTO and air.     

     
Figure 1 

  Optical diffraction patterns were analyzed to determine the symmetry of the PhC structure. A 3 

dB modulation of light intensity is demonstrated from its thermo-optical response. Fig. 2 (a) 

shows the transmission diffraction pattern using a multiple wavelengths argon ion laser. The 

spots in Fig. 2 (a) represent 1
st
 order diffraction. The pattern has diffraction along the [1 0] and [1 

1] symmetry directions as would be expected for a PhC with square lattice symmetry. The bright 
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diffraction spots result from a very small patterned area. That indicates the PhC has a very high 

spatial uniformity. The thermo-optical response of the BTO PhC is shown in Fig. 2 (b). The 

normalized 1
st
 order diffraction efficiency η decreases from 2.1 to 1 when temperature increases 

from 30
o
C to 150

o
C. No variation of the diffraction angle θ is found during the heating or 

cooling process. This indicates the thermal response is solely attributed to the temperature 

dependence of nBTO; no thermal expansion of PhC lattice parameter is involved. The observed 

thermo-optical effect can be applied in the tuning of the photonic band gap. The PhC spectrum 

shifts if there is a change of nBTO. From the FDTD calculation heating to 120
o
C leads to a 57 nm 

red shift of the band structure. Strong light scattering from the BTO PhC is also observed as 

shown in fig. 2 (c). The light is coupled to the PhC cavity through the waveguide edge. The 

bright rectangle at the right of the image is the scattering light from PhC and it indicates the light 

is highly localized within the PhC cavity. The scattering light intensity is proportional to the 

degree of light localization. The strong light confinement can significantly enhance the optical 

nonlinearity of the BTO thin films, potentially leading to ultra compact photonic devices.   

       
 Figure 2 

Future Work: CNM-827 Fabrication of integrated nano-photonic circuits on epitaxial barium 

titanate thin films 
Further work is directed toward tunable 2-D photonic circuits. E-O devices having fabricated PhCs 

can be potentially used in a low V-pi waveguide modulator, slow light buffer, tunable filters, and 

high Q resonators. We are interested in photonic circuit fabrication using non-linear optical materials 

such as BTO thin films. BTO has low absorption constant in both IR and visible range. Furthermore 

BTO has a large E-O coefficient and exhibits broad band second harmonic generation.    

  The proposed nonlinear optic circuits are composed of micro-rings and photonic crystals which 

have a sharp transmission line and a well defined photonic band structure. The optic circuits can be 

generated by high resolution FIB and laser writing techniques. The device tunability is characterized 

by measuring the shifting of the resonant frequency with bias. The device performance is evaluated 

by comparing the experiments with the FDTD simulation. Successful completion of the project 

would lead to new generation of integrated and tunable non-linear photonic devices and circuits.  
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