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The first Hitachi aberration corrected scanning transmission electron microscope 

(HD2700C STEM) was successfully installed at CFN.  The instrument has a cold-field-emission 
electron source with high brightness and small energy spread.1 The excellent electro-optical 
design and aberration correction make the instrument ideal for atomically resolved STEM (Z-
contrast) imaging and electron energy loss spectroscopy (EELS).   In our presentation we will 
show the capabilities of the new microscope. 

Research Achievement 
 We have utilized the instrument to study various energy related materials ranging from 
superconducting and thermoelectric materials to core-shell nano-electrocatalysts.  Although 
aberration correction improves spatial resolution of the instrument, it does not make image 
interpretation easier due to the large convergent angles used to gain beam current.  To understand 
the image contrast, we developed our own computer codes based on the multislice method with 
frozen phonon approximation to calculate annular-dark-field (ADF) images.  Figs.1 compare 
experiment with calculation of SrTiO3 in (001) projection, showing very good agreement.   Our 
study demonstrates that the ADF image contrast (or Z-contrast) does not follow the simple I~Z2 
or I~Z1.8 power rule as many expect.2  Although an ADF image indeed shows Z-dependence 
contrast, only under very high collection angles (i.e. in a true HAADF mode) it yields strong 
intensity in high Z atom columns and weak intensity in low Z. The image intensity also strongly 
depends on sample thickness as well as dynamic and static lattice displacement of the atomic 
species. To correctly interpret the ADF intensity in STEM images, the effect of atomic thermal 
vibration (Debye-Waller factor) of the atoms must be taken into account.  Even at large 
collection angles the power law Z-dependence is only valid for very thin specimen.3 

Future Work 
 Our goal is to conduct STEM experiment and retrieve quantitative crystal, chemical and 
electronic information of the materials under study at atomic resolution.  We have been working 
on single atom imaging and spectroscopy to further test and push the resolution limit of the 
instrument.  We also plan to combine STEM with SEM using second and back-scattered 
electrons to retrieve surface structural information.  The ability to image surface and bulk 
structure simultaneously at atomic resolution will revolutionize the field of microscopy and 
better serve the scientific needs of our user community.4 
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Fig.1 (a-b) Experimental images with convergent angle =27 mrad and collection angle =64-341 mrad (a) in thin area, and (b) 
in thick area. (c-d) Simulated images with (a) thickness=11 nm, and (d) thickness=54 nm, in the image condition of =27 mrad 
and =64-341 mrad. The simulated images are convoluted with a Gaussian point spread function (HMFW=0.09nm). (e-f) 
Intensity profiles from (a)-(d) with black lines from experiments and red lines from calculations.  (g) The crystal model of 
SrTiO3 where blue dots represent Sr, green dots represent Ti and yellow dots represent O. 
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Fig. 2 (a) Intensity ratio ISr/ITiO with the collection angle increasing from left to right and thickness from top to bottom (Debye-
Waller factors BSr= 0.6214, BTi= 0.4398 and BO= 0.7323). (b) Intensity ratio ISr/ITiO with BSr=BTi=BO=0.5. The area with 
collection angle 64 mrad and thickness 4.3 nm is considered to comply with a power law Z-dependence (Zn) with n ranging 
from 1.77 to 2, as outlined by the intensity contour (>2.6). (c) Intensity ratio profiles of collection angle with thickness being 
10.1, 30.4 and 50.3 nm. (d) Intensity ratio profiles of thickness with inner collection angle being 20, 30, 64 and 100 mrad (for 
details, see ref 3). 



 


