Nano-Sized Particles in the Environment: Fate, Transport and Potential Impacts to Ecosystem Health

Bridging NanoEHS Research Efforts: A Joint US-EU Workshop

····· H0. 2

Pedro J.J. Alvarez 11 March 2011

Growth of Nano-Related Publications (3-year doubling time)

Microbial-nanoparticle Interactions to Inform Risk Assessment

- Bacteria are at the foundation of all ecosystems, and carry out many ecosystem services
- Disposal/discharge can disrupt primary productivity, nutrient cycles, biodegradation, agriculture, etc.
- Antibacterial activity may be fastscreening indicator of toxicity to higher level organisms (*microbial sentinels*?)

Bacterial Toxicity Mechanisms

Nanoparticle Modifications in the Environment

NOM reduces bioavailability & toxicity of nC₆₀

Humic acid concentrations as low as 0.1 mg/L eliminated toxicity

Li, D., Lyon D.Y., Q. Li, and P.J.J. Alvarez (2008). Environ. Toxicol. Chem. 27(9):1888-1894

Dissolved NOM Enhances C₆₀

Dissolved NOM Decreases nC₆₀ Deposition onto a Quartz Surface, Increases Mobility in Water

Bioavailability and Toxicity: nAg Example

Ag⁺ is released only if nAg(0) is oxidized: $4Ag^0 + O_2 + 4H^+ \leftrightarrow 4Ag^+ + 2H_2O$ (Solubility of $Ag^0 \approx 0$) Toxic Ag O_2 Bacteria Toxic? Bacteria nAg(0)**Bioavailable?** Toxic? igands O_2 Cl⁻, S²⁻, Cysteine, Complexation? Nanomaterials: Bioavailability

and Environmental Exposure (funded by USEPA & NERC)

CO₃²⁻, HCO₃⁻, SO₄²⁻, PO₄³⁻

Precipitation?

Risk = Hazard × Exposure

Upcoming ES&T Special Issue: Nanoscale Metal-Organic Matter Interactions – Apr 15, 2011

Synthetic Nanoparticles in Natural Water

Example

- 1.5.10³ manufactured nanoparticles/ml
- 10⁸ natural nanoparticles/ml (erosion, eruptions, combustion, etc)

International Workshop on Priorities to Advance the Eco-Responsible Design and Disposal of ENMs (Rice University, March 9-10, 2009)

What critical knowledge gaps and opportunities exist to inform and advance the design of environmentally benign ENMs and the management of wastes containing them?

Towards Ecoresponsible Nanotechnology

Alvarez P.J.J., V. Colvin, J. Lead and V. Stone (2009). Research Priorities to Advance Eco-Responsible Nanotechnology. ACS Nano 3(7): 1616-1619.