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Scientific Thrust Area: Nanophotonics and Optical Nanomaterials 
 
Research Achievement:  
     The recent discovery of metamaterials has led to the demonstration of unique optical 
behavior such as a negative index of refraction [1] and cloaking [2]. Metamaterials 
provide a new scale-invariant design paradigm to create functional materials thereby 
enhancing our ability to manipulate, control, and detect electromagnetic radiation.  

This poster highlights some of the activity at CINT in the area of active and passive 
metamaterials both as internal CINT science that reaches into both National Laboratories 
and in collaboration with a number of users at several universities. 
 
Passive Metamaterials:  
Composite metamaterial elements with sub-wavelength scale (~λ0/10), such as split ring 
resonators (SRRs), can be patterned in a periodic array to form metamaterials. Thus 
metamaterials can be considered as an effective medium and are well described by 
magnetic permeability µ(ω) and/or electric permittivity ε(ω), Our early work 
concentrated on fundamental aspects of planar metamaterials and at Terahertz 
frequencies such as electrical resonator designs [3], demonstrations of complementary 
designs (Babinet’s principle) in metamaterials [4], etc. Metamaterials however, offer new 
degrees of freedom that are not easily attainable through other approaches, such as large 
optical phase shifts and tunable resonators that can be designed throughout much of the 
infrared spectra. Recently, we have used taken advantage of the latter properties to design 
polarimetric components at terahertz frequencies [5]. We explored the sensor aspects of 
metamaterials by taking advantage of the sensitivity of metamaterial resonances to local 
changes in the dielectric environment [6]. For example, using appropriate linker 
molecules, planar metamaterials can be turned into protein sensors. Also, we investigated 
a number of approaches to improve the sensitivity of such sensors, for example, by 
fabricating samples on free standing sub-wavelength membranes [7]. 
 
Active Metamaterials:  
Intentional modifications to the local dielectric environment of the subwavelength 
constituents of metamaterials allow for dynamic control of their transmission and 
reflection. For example, direct photoexcitation of carriers in planar metamaterials can 
provide an AC shunt to the small capacitive gaps in planar metamaterial designs and thus 



decrease the resonance strength. This effect was demonstrated at THz frequencies in Ref. 
[8]. More recently, this was demonstrated also in the near IR using fishnet metamaterials 
with an amorphous silicon dielectric spacer, and fabricated using nanolithography. Using 
the latter scheme, we achieved sub-picosecond modulation speeds corresponding to data 
rates of Terabits per second.  

A similar dynamic change can be obtained by fabricating metallic metamaterial samples 
on a doped semiconductor layer and utilizing the top metal as a Schottky gate. Upon 
reverse bias, carriers are depleted from the capacitive gaps and the metamaterial 
resonances appear in transmission. Removal of that bias causes the capacitive gaps to be 
shunted and then the resonance features disappear. This effect has been used to design 
amplitude [9,] and phase [10] modulators, and more recently multi-pixel spatial light 
modulators for IR beams. 

Future Work  
We will push the operating wavelength of active metamaterials to the mid and near IR. 
This will necessitate the use of nanolithography and the exploration of other 
semiconductors, metals and other types of conductors. Additionally, research into new 
schemes for 3D lithography of metamaterials are under way. 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United 
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