News from the NNI Community - Research Advances Funded by Agencies Participating in the NNI

Date Published
(Funded by the U.S. Department of Energy)

Researchers from Penn State; Columbia University; the National Renewable Energy Laboratory in Golden, CO; TUD Dresden University of Technology in Germany; King’s College London; Radboud University in the Netherlands; the University of Chemistry and Technology Prague in the Czech Republic; and the University of Regensburg in Germany have identified a surface exciton – an excited electron and the hole it leaves behind – in chromium sulfide bromide, a layered magnetic semiconductor. Cooling chromium sulfide bromide down to around –223 degrees Fahrenheit brings it to a ground state, or the state of lowest energy. This transforms it into an antiferromagnetic system, in which the magnetic moments – referred to as “spin” – of the system’s particles align in a regular, repeating pattern. This antiferromagnetic ordering ensures that each layer alternates its magnetic alignment. As a result, excitons tend to stay in the layer with the same spin. Like cars on alternating one-way streets, these established boundaries keep excitons confined to the layer with which they share the same spin directions. 

(Funded by the U.S. National Science Foundation)

Researchers at North Carolina State University have demonstrated a new technique that uses light to tune the optical properties of quantum dots. The researchers placed green-emitting perovskite quantum dots in a solution containing either chlorine or iodine. The solution was then run through a microfluidic system that incorporated a light source. The microfluidic environment enabled precise reaction control by ensuring uniform light exposure across small solution volumes, approximately 10 microliters per reaction droplet. The light triggered reactions that made the green-emitting perovskite quantum dots move closer to the blue end of the spectrum when chlorine was present in the solvent and closer to the red end of the spectrum when iodine was present in the solvent.

(Funded by the U.S. Department of Energy)

Researchers from Rice University; the Massachusetts Institute of Technology; Carnegie Mellon University; the National University of Singapore; Southern University of Science and Technology in Shenzhen, China; and Osaka University in Japan have found a two-dimensional (2D) carbon material that is tougher than graphene and resists cracking. Carbon-derived materials, such as graphene, are among the strongest on Earth, but once established, cracks propagate rapidly through them, making them prone to sudden fracture. The new carbon material, called a monolayer amorphous carbon, is both strong and tough. Like graphene, this material is also a 2D material, but unlike graphene, in which atoms are arranged in an ordered lattice, this material incorporates both crystalline and amorphous regions. "This unique design prevents cracks from propagating easily, allowing the material to absorb more energy before breaking," said Bongki Shin, one of the researchers involved in this study.

(Funded by the National Institutes of Health)

Scientists at the Icahn School of Medicine at Mount Sinai have developed a lipid nanoparticle system that can deliver messenger RNA (mRNA) to the brain via intravenous injection – a challenge that has long been limited by the protective nature of the blood-brain barrier. The system takes advantage of natural transport mechanisms within the blood-brain barrier that move nanoparticles across the blood-brain barrier. The findings, in mouse models and isolated human brain tissue, show the potential of this system for future treatments for Alzheimer’s disease, amyotrophic lateral sclerosis, brain cancer, and drug addiction. 

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have unveiled a new technique that could help advance the development of quantum technology. Their innovation provides an unprecedented look at how quantum materials behave at interfaces. “This technique allows us to study surface phonons — the collective vibrations of atoms at a material’s surface or interface between materials,” said Zhaodong Chu, one of the scientists involved in this study. ​“Our findings reveal striking differences between surface phonons and those in the bulk material, opening new avenues for research and applications.” Some of the research activities were performed at Argonne’s Center for Nanoscale Materials, a DOE Office of Science user facility. 

(Funded by the U.S. Department of Energy and the U.S. National Science Foundation)

Researchers from the U.S. Department of Energy's SLAC National Accelerator Laboratory; Villanova University; Northwest Missouri State University; Deutsches Elektronen-Synchrotron DESY in Hamburg, Germany; the Max Planck Institute of Quantum Optics in Garching, Germany; the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany; the Institute for Photonics and Nanotechnologies in Milano, Italy; and Politecnico di Milano in Italy have observed how electrons, excited by ultrafast light pulses, danced in unison around fullerene (C60) molecules. Researchers measured this dance with unprecedented precision, achieving the first measurement of its kind at the sub-nanometer scale. The synchronized dance of electrons, known as plasmonic resonance, can confine light for brief periods of time. While they’ve been studied extensively in systems from several centimeters across to those just 10 nanometers wide, this is the first time researchers were able to break the field’s “nanometer barrier.”

(Funded by the U.S. National Science Foundation)

Researchers from Oregon State University, The Ohio State University, and the Southern University of Science and Technology in Shenzhen, China, have helped characterize a novel electrocatalyst developed by collaborators at Yale University and helped explain its improved efficiency for deriving methanol from carbon dioxide. The researchers’ dual-site catalyst is the result of combining two different catalytic sites at adjacent locations, separated by about 2 nanometers, on carbon nanotubes. The new design increases the methanol production rate, and less of the electricity used to catalyze the reaction is wasted. “The hybrid catalyst was found to exhibit unprecedented high catalytic efficiencies, nearly 1.5 times higher than observed before,” said Zhenxing Feng, one of the scientists involved in this study.

(Funded by the U.S. Department of Energy)

Scientists from the U.S. Department of Energy's (DOE) Argonne National Laboratory, SLAC National Accelerator Laboratory, and Lawrence Berkeley National Laboratory; the University of California, Berkeley; Pennsylvania State University; Stanford University; Rice University; the Indian Institute of Science in Bangalore, India; the Japan Synchrotron Radiation Research Institute in Sayo, Japan; RIKEN SPring-8 Center in Sayo, Japan; and the University of Tokyo in Japan are investigating a material with a highly unusual structure – one that changes dramatically when exposed to an ultrafast pulse of light from a laser. At the Center for Nanoscale Materials, a DOE Office of Science user facility at Argonne, the scientists used a technique called transient absorption spectroscopy to detect photocarrier activity within the material. This approach helped them determine how much charge gets released and how quickly the charge decays. 

(Funded by the U.S. Department of Energy)

Most optical sensors record data from light and then transmit all of the raw data to a computer for processing. This typically consumes more energy than necessary, because in most applications, only a small amount of information relative to the raw data is needed. So, scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory and Sandia National Laboratories; the University of California, Berkeley; the University of California, Davis; and the University of Texas at Arlington are developing a less power-hungry approach, in which some data processing is conducted in the sensor itself, before the data is sent to a computer or processed by edge computing devices. The new sensor, called a “nanoscale hybrid,” stitches together nanostructures, such as nanotubes and nanowires. It is highly sensitive in part because the sensor’s nanoscale components are smaller than the wavelength of light. 

(Funded by the U.S. National Science Foundation)

Engineers from Purdue University and GRIMM Aerosol Technik Ainring GmbH & Co. in Germany have found that chemical products from air fresheners, wax melts, floor cleaners, and deodorants can rapidly fill the air with nanoparticles that are small enough to get deep into our lungs. These nanoparticles form when fragrances interact with ozone, which enters buildings through ventilation systems. "Our research shows that fragranced products are not just passive sources of pleasant scents—they actively alter indoor air chemistry, leading to the formation of nanoparticles at concentrations that could have significant health implications," said Nusrat Jung, one of the engineers involved in this study.