

IFA Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung

Worker protection and exposure RM strategies for NM production, use and disposal

Markus Berges Joint US&EU Workshop, 11th March 2011

German Social Accident Insurance (DGUV)

- Social Accident Insurance for more than 70 million employees, pupils and students
- More than 3.5 Million companies insured
- Rehabilitation
- Compensation
- Prevention
 - Research
 - Surveillance
 - Regulation

Markus Berges, Joint US&EU Workshop, Washington

IFA activities

- Started survey on workplaces concerning UFP in 1998
- Since 2006 additional focus on nanoparticles
- Research EU projects: Nanosafe 2, NANOSH, NanoImpactNet, NANODEVICE and QNano
- Regulation: Participation in WGs of the advisory panel (AGS) of the Federal Ministry of Labour and Social Affairs
- Standardization: ISO TC 229 Nanotechnology
- Stakeholder dialogue
 - Participation in the German NanoDialogue Drafting the "five basic principles for the responsible use of nanomaterials" of the German Federal Government's NanoKommission
 - NanoPortal: <u>www.dguv.de/ifa/nano</u>

History in dust research and dust battling

Konimeter

(How much progress did we really made?)

Markus Berges, Joint US&EU Workshop, Washington

11th March 2011

The balancing act in the field of Nanotechnology

- Ensure workers safety **today** in view of knowledge gaps
- Strategy for risk assessment and management is
 - based on the precautionary approach with respect to the principle of proportionality
 - and in the absence of health-based OELs targeted to "minimize" exposure and thus risk of workers
 - complemented by
 - Information for companies and stakeholders
 - Research to close knowledge gaps
 - Standardization activities to ensure quality and level the playing field

Assess workplace exposure to MNM by employing state-ofthe-art technology

Markus Berges, Joint US&EU Workshop, Washington

11th March 2011

Give measurements a meaning: Proposal for Benchmark levels

- No health-based workplace limit values !
- For metal, metal oxides and other biopersistent granular nanomaterials
 - Not for ultrafine particles
- Boundary Conditions
 - Averaged over 8-hour work shift value
 - Above background
 - Size range 1 100 nm
- 20 000 particles /cm³ for density greater than 6 000 kg/m³
- 40 000 particles /cm³ for density smaller than 6 000 kg/m³
- See also
 - Schulte et al.: Occupational exposure limits for nanomaterials: state of the art, J Nanopart Res (2010) 12:1971-1987
 - S. Dekkers, C. de Heer, RIVM report on provisional nano-reference values, Report 601044001, 2010

Note of caution: NOT to be discussed today !

Assess the effectiveness of protective measures

- Effectiveness of Local Exhaust Ventilation (LEV) in Controlling Engineered Nanomaterial Emissions During Reactor Cleanout Operations (Methner et al., JOEH. 5 D63-D69, 2009)
- "Conventional engineering control measures work well" J. H. (Han et al. Inhalation Tox. 2008, 20: 741-749)

Assess the effectiveness of protective measures

Draeger P2R capsule (glass fibres)

See also Shaffer & Rengasamy, Respiratory protection against airborne nanoparticles: a review, J. Nanopart. Res., (2009)

NanoPortal of IFA

- Information and Advice on: Nanoparticles at the workplace
 - Recommendation for measurement
 - Protective measures
 - Assessment of protective measure's effectiveness

www.dguv.de/ifa/nano Webcode: d90477

Responsible use of nanomaterials: The position of the German Social Accident Insurance

•http://www.dguv.de/inhalt/praevention/themen_a_z/nano/Position spapier_Nano_englisch.pdf

Gaps – Workplace exposure assessment

- Background distinction !!! (NANODEVICE: CNT monitor and fibre monitor? / Sensor for catalytic properties)
- Monitoring strategy (2 WS with participation of NIOSH devoted to this within NanoImpactNet)
- Size range of NP: Regulation ↔ Measurement techniques
- Validation of sampling for imaging techniques
- Data throughout the life cycle are nearly absent
 - Characterization of emissions from materials containing ENM by mechanical forces (might occur decades after implementation!)
- Burning issue: HARN and MNM containing HARN Will regulators be outpaced?

Tiered-Type Approach to an Exposure Assessment <

- Common initiative by a working group of:
 - BAuA Federal Institute for Occupational Safety and Health
 - BGRCI BG: Raw materials and Chemical Industry
 - IFA
 - VCI German Chemical Industry Association
- Goal:
 - Harmonized strategy for an efficient, reliable but also pragmatic exposure assessment
 - As a starting point for an effective risk management
 - But not the basis for further scientific and research oriented studies
- Tiered-type approach appears to be the most appropriate strategy
 - Tier 1: Information gathering according to established best practices in industrial hygiene
 - Tier 2: Basic exposure assessment using a limited set of easy-to-use equipment
 - Tier 3: Expert exposure assessment applying latest state-of-the-art knowledge and technology.

Problem: HARN (Nanotubes, Nanowires, Nanorods)

- Most prominent species: CNT
- Benchmark levels ???:
 - BSI PD 6699-2:2007: 10 000 fibres/m³
 - Germany: TRGS 910
 Exposure-risk-relation for asbestos: 10 000 fibres/m³
- Problem: no standardised sampling- and counting methods for CNT by electron microscopy
 - · Scope of the asbestos threshold value are free fibres in the air
 - Limit of detection way higher than 10 000 fibres/m³ depending on diameter of the CNTs

•What are the tox properties of "pieces"? e.g.. PU+CNT emitted by a mechanical process? (Picture courtesy of Albert Hellmann)

Gaps – Protective measures

- Despite the common belief of e.g. NIOSH, IFA, SUVA and other international institutions that common protective measures against dust are effective for MNM...
- ...the question of appropriateness is NOT resolved
- Demand by companies and other stakeholders for the certification of control measures against MNM
 - Might be addressed by EC mandate M/461" for standardization activities against NT and NM"
 - More testing of
 - Materials ("pure" ENM, materials containing ENM)
 - Filter materials and machines