Setting the Scene surrounding Nanotechnology in Japan

International Symposium on Assessing the Economic Impact of Nanotechnology

March 27, 2012

Naoya Kaneko, Kazunobu Tanaka Center for Research and Development Strategy Japan Science and Technology Agency

1. Evolution of Nanotechnology

<u>1980 1990 2000 2010 2020</u>

ERATO(1981) JRCAT(1992) NNI and national nanotech projects

Progress Nano (1st generation)

Progress of Nano-world (1-100nm) in each independent discipline via top-down, bottom-up or combination process *TEM,STM,ALE,lithography, CNT, computer science, omics*

Fusion Nano (2nd generation)

Interdisciplinary fusion of nano-worlds of different disciplines, producing new function of material, process or device *low-k material via block-copolymer process, chemical biology*

Systems Nano

Integration of various nano-worlds into functional systems *materials design, molecular electronics, ceranostic medicine, hierarchical self-assembly of systems (*→*innovative products)*

Engine for Innovation

2. Role of Nanotechnology toward Sustainable and Eco-friendly Society

(Source) Center for Research and Development Strategy, Japan Science and Technology Agency, "CRDS-FY2010-SP-02 Nanotechnology - Grand Design in Japan", March 2010 Japan Science and Technology Agency All Rights Reserved.

3-1. Major Issues of Nanotechnology toward Sustainable and Eco-friendly Society

Japan Science and Technology Agency All Rights Reserved.

3-2. Major Issues of Nanotechnology toward Sustainable and Eco-friendly Society

ilm FC of new aterials g • Search for ne superconductor	 Thin-film or solar cells (209 High-efficience elements (ZT > 3@Room Low-cost 	rganic %) y thermoelectric n temperature) , long-life rechargea	 Low-cos cells (7 yen Ult (Con ≥60% ble batteries 	t, high-efficiency solar /kwh,30%) tra-high-efficiency solar cells centrator, multiple-junction, %) • Platinum-free fuel cells (PEFC)	
· Ultra-lo ight (Nanotrib ength · Sub r natura Vater, Gas) · R (Eno · Advance ine medicine chips · Cell	 Super power to power to power to power to pology) postitutes for rare al resources poon-temperature for ergy saving, Resourced regenerative l chips 	 conducting ransmission Radiation-resista repairing material power generation) abrication process cce saving) Implante Metabolic chips 	 Hybrid sn Bior petrole int self- is (Nuclear & diagnostic/tn Intageneration 	nart energy systems efineries (Same cost as eum) Artificial photosynthesis (Hydroger & fuel production) reatment devices tracellular nanosurgery	
Iolecular imaging Environmental nonitoring with iomaterials	 Integrated sy diagnosis & tre Information devices utilizing self-organization 	stem of drug deliver atment g cleanup on photosy	ry, ronmental o imitating ynthesis	 Intracellular 3D imaging Ultra-low-power biomimetic IT 	
le electronics • Smart grids • High-resolution di Carbon-based nanoelectronics		s displays	 Super-smart grids Integration of nano-CMOS & bio 		
• • • • • • •	Smart sensor netv • Integration	vorks · V n of nano-CMOS & j	Vearable PDAs photonics	S • Spin-wave electronics	
	 Ultra-le ight Ultra-le (Nanotrik (Nanotrik (Nanotrik	 Ultra-low-friction materia ight (Nanotribology) eength · Substitutes for rare natural resources Water, Gas) · Room-temperature f (Energy saving, Resour · Advanced regenerative ine medicine chips · Cell chips Molecular imaging · Integrated sy diagnosis & treater information devices utilizing self-organization Smart gride High-resolution Smart sensor network Integration 	 Ultra-low-friction materials ight (Nanotribology) Radiation-resistant repairing materials power generation) Substitutes for rare natural resources Room-temperature fabrication process (Energy saving, Resource saving) Advanced regenerative Metabolic chips Advanced regenerative Integrated system of drug deliver diagnosis & treatment Information Environmental nonitoring with devices utilizing cleanup self-organization Smart grids High-resolution displays Integration of nano-CMOS & 	 Ultra-low-friction materials ight (Nanotribology) Radiation-resistant self- repairing materials (Nuclear & power generation) repairing materials (Nuclear & power generation) Room-temperature fabrication process (Energy saving, Resource saving) Advanced regenerative Implanted diagnostic/tri ine medicine Advanced regenerative Integrated system of drug delivery, diagnosis & treatment Information Environmental Information Environmental Information Smart grids Smart grids Smart sensor networks Wearable PDAs 	

2015

Field

Nanoelectronics Nanobiotechnology Green nanotechnology

2020

(Source) Center for Research and Development Strategy, Japan Science and Technology Agency, "CRDS-FY2010-SP-02 Nanotechnology – Grand Design in Japan", March 2010 Japan Science and Technology Agency All Rights Reserved.

4. Impact of Nanotechnology on Industry and Economy; How to measure it

"Nanotech Inside"- difficult to recognize nanotech used in commercial products / T.Kawai (Osaka univ)

 Prediction of market size for the nanotech industry (Lux Research, Inc.)

nanotechnology-based goods (2007) US\$88B

nanotechnology-enabled goods (2015) US\$2.5T

- PEN project taking statistics of the number of catalogued nanotech products in the world (US)
- "NanoMark" system for promoting commerciallization of nanotech products (Taiwan)
- KoNTRS statistics on nanotech researchers, companies, and nanotech courses in univs (Korea)

5. A Challenge to measure; Nanotech-enabled Consumer Products

Lux Research report, 2009 "The Recession's Ripple Effect on Nanotech"

6. A Challenge to measure; Nanotech-enabled Consumer Products

Nanotechnology-based consumer products

As of March 2011, the inventory has grown by nearly 521% (from 212 to 1317 products) since it was released in March 2006

> PEN, Woodrow Wilson International Center for Scholars http://www.nanotechproject.org/news/archive/9231/

Japan Science and Technology Agency All Rights Reserved.

7. A Challenge to measure; Nano Mark System

Initiate Nano Mark System

- Steering Committee of Nano Mark (2004.11.12)
- Technical Review Committee (2004.12.08)
- Announcement (2004.12.15)
- Provide support to Centers to establish the protocol of test and verification standards (on consumer products)

http://www.nanomark.itri.org.tw/

Vice-president Lu inaugurated Nano Mark System on Nov. 6th, 2004

- Nano Dimension
 100nm
- New characteristics

Nano Mark products exceeds 300 (Taiwan / 2009)

Japan Science and Technology Agency All Rights Reserved.

Courtesy ; M-K Wu (May 2006)

8. A Challenge to measure; Nanotech Companies

Courtesy ; H.M. Kim

Review of the 10 years NT Initiative (Korea, 2001-2008)

Number of NT companies increases from 78 (2001) to 274 (2008)

9-1. A Challenge to measure; Relative Patent Applications

Investment effect on 8 promotion areas in the 3rd S&T Basic Plan (2006-2010)

• 4 focused promotion areas + 4 promotion areas

Life Science (19.2%) Energy (26.6%)

IT (9.3%) Manufacturing (2.0%)

Environment (7.1%) Social Infrastructure (16.7%)

Nanotech & Mat (5.0%) Frontier (14.1%)

*Resource Allocation (%) to 8 areas

(FY2008)

• Economic impact of strategic investment on the 8 promotion areas was estimated in terms of relative number of patent applications of each area, weighted using the concordance table between patents of 8 areas and the sales of 22 different manufacturing industries of Japan

(Source) Center for Research and Development Strategy, Japan Science and Technology Agency, "CRDS-FY2010-SP-02 Nanotechnology - Grand Design in Japan", March 2010

9-2. A Challenge to measure; Relative Patent Applications

Nanotechnology - the highest impact among 8 areas

(Source) Center for Research and Development Strategy, Japan Science and Technology Agency, "CRDS-FY2010-SP-02 Nanotechnology - Grand Design in Japan", March 2010

10. The 4th S&T Basic Plan in Japan (2011-2015)

• <u>2011-2015 / the 4th S&T Basic Plan</u>

Final approval on the 11th August, 2011 (delayed due to the Disaster, March 11, 2011)

- Shift from "R&D-priorotization" policy to "problemsolving" one in order to meet with urgent social needs / CO2 reduction by 25% by 2020 (2009)
- <u>(1) "Safety. Recovery & Reconstruction Initiative"</u>

from the Great East Japan Disaster, March 11, 2011

(2) "Green Innovation" and (3)" Life Innovation"

as a New Growth Initiative

• <u>(4)"Promotion of Basic R&D activities and</u> <u>Strengthening of Human Capability Development"</u>

Evolution to systems via Innovation How to drive and accelerate?

11. Post 2011 S&T Policy in Japan

- Shift from "R&D-promotion-based" policies to "problemsolving-oriented" ones in order to meet with urgent social needs / CO2 reduction by 25% by 2020 (2009)
- 2011-2015 / the 4th S&T Basic Plan

Final approval delayed due to the Great East Japan Disaster, March 11, 2011

- New Growth Initiative including Green Innovation and Life Innovation
- Nanotechnology as a common S&T basis —

Green Nanotech, Bionanotech, Nanoelectronics

 Safety and Security issue will be explicitly described in a main scenario of the Basic Plan

In addition to "Progress Nano" and "Fusion Nano", "Systems Nano" should be strongly encouraged

12. Evolution to System and Society

13. Systems Nano and Commercialization; Evolution to System and New Product

Seeds pushing evolution

Scientific and technological *evolution from simple element to complex system* via interdisciplinary fusion of physics, chemistry, biology, mathematics, materials science, and systems science

materials design, self-organization, quantum computer

Needs oriented evolution

"Functions Design" which provides powerful engine for *evolution* from science to society via integration of novel and existing technologies and disciplines

Non-CMOS computer, High-efficiency solar cell made by lowcost and energy-saving process

Evolution drivers

Promotion & acceleration of evolution, user facilities, EHS & ELSI, standardization, human capability, International collaboration

Interdisciplinary fusion, Integration and Design, and Drivers → *Innovation*