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* Moore’s Law Predicted Nano-Featured
Integrated Circuits

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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ﬁ® Transistor/chip T = Price/transistor 4
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ﬁ® Nanotechnology + Electronics =
Today’s “Semiconductor” Industry
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ﬁ® Shrinking Transistors
Scaling Drives the Industry

Smaller features - Better performance & cost/function
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E Economic Impact of Semiconductors

= Direct
= $300 billion/year worldwide
= 182,000 jobs in the U.S.
= #1 U.S. exporting industry over past 6 years

= |ndirect
= Supports ~6 million U.S. jobs

= Semiconductor industry represents <2% of GDP, but
semiconductor-enabled ICT accounts for 25% increase
In productivity (Jorgenson et al., 2007)



* Economic Impact Measured by Growth
Accounting: Semiconductors

= Difference In output vs. input Is due to “innovation”

= |In 1960-2007 Semiconductor industry output grew
22 times faster than the US economy as a whole

= Semiconductors are largely an intermediate input to
other industries (like nano)

= Semiconductor use accounts for growth in many
other industries.
= 37% of growth in Communications (1960-2007)
= 40% of growth in Primary Metals (1960-2007)
= 48% of growth overall (1995-2000)

* Increased Labor Productivity in Education Services,
Federal Govt, Wholesale, etc.



E® Macroeconomic modeling of ROI from
chemical research investment

“Measure for Measure: Chemical R&D Powers U.S. Innovation Engine”,
Council for Chemical Research, 2005
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**extrapolated from LANL study by Thayer, et al., April
2005 using REMI economic model
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*Research for Economic Benefit:
The SRC Model

* |Industry consortium established by visionary
leaders in 1982 to invest in pre-competitive
university research.

= Objectives
* Explore novel, relevant technologies
 Promote collaboration

« Create a pool of knowledgeable faculty and a
pipeline of talent

= SRC has supported more than 2000 faculty and
9,000 students at 200+ universities
worldwide.




ﬁ® SRC’s “Enhanced” Research Processes

= Develop research needs & priorities with industry

= Builds upon the International Roadmap for
Semiconductor Technology (www.itrs.org)

= Engage world-class researchers globally
= Good faculty attract good students

= Provide Industry “liaisons”

* Provide input/feedback and sometimes access to
samples, facilities, etc.

= Mentor students
* Transfer results to the company

= Connect people, transfer technology
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http://www.itrs.org/

Semiconductor Research Corporation:
A Family of Distinct, Related Program Entities
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E® Beyond CMOS= “Nanoelectronics”

= Nanoelectronics Research Initiative (NRI) launched in 2005
= Industry Members: GlobalFoundries, IBM, Intel, Micron, Tl

B ( intel) 3 Texas AMlcron’

INSTRUMENTS

=Federal partners: NSF & NIST @ : ler

= State/local partners: California, Indiana (+South Bend),
New York, Texas, and Virginia

ﬁ IBALFOUNDRIES

[[ren]]

= Mission: Demonstrate novel computing devices capable of
replacing the CMOS FET as a logic switch in the 2020
timeframe.
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ﬁ NRI Primary Research Vectors
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Finding the Next Switch

"NRI Funded Universities

Nanoelectronics » Architectures
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ﬁ® SRC Numbers

SRC Research Programs™ Deliverables*

v' Over $1.6B v' 43,070 technical documents
invested ﬁ> = 377 patents granted

v 3,225 contracts » 908 patent applications

v 9,195 students ﬁ> = 677 software tools

v 2,025 faculty v’ 2,944 research tasks/themes

members
. N v' 9,195 students
v’ 261 universities
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E@ Assessing Impact of SRC:
Direct Outputs

= Technical documents
= Publications
» Presentations (conferences, reviews, etc.)
= Reports

= Patents
= Students graduated/hired
= Startup companies

16



ﬂ® IEEE Journals: Citation Statistics

= Totals (through 2010) Average per year -
% of | Avg.
IEEE Journal Papers | Citations | 100+ | Papers |Citations| 100+ | 100+ |cit/pub
Transactions 16,807 245,899 304 357.60 5,232 6.47, 1.8% 14.6
Proceedings of the IEEE 19,949 279,959 548 231.97 3,255 6.37] 2.7% 14.0
Electron Device Letters 6,433 103,644 111 207.52 3,343 3.58 1.7% 16.1
Journal of Solid State
Circuits 8,813 158,184 218 195.84 3,515/ 4.84, 2.5% 17.9
Circuits and Devices
Magazine 615 1,522 2| 61.50 152 0.20 0.3% 2.5
Trans. on CAD of
Integrated Circuits and
Systems 3,952 51,897 52| 146.37 1,922 193 1.3% 13.1
Transactions on
ng-p-u-ters-\ 7,324 124,501| 184 166.45 2,830 4.18 2.5% 17.0
“Transactions on >
Nanotechnology 820 9,076 8 91.11 1,008 0.89 1.0% 11.1
Meliability 4,165 31,444 20, 88.62 669 0.43 _05% 1.6
Averages 7,653 111,792 161 171.89 2,436.35| 3.2 ,1.60?:( 12.;}
)\ W 4 S 4




ﬁ |
|

Technology Transfer Indicator:
Citations by Industry

Est. Total Commercial Application
. . Cit.
;zsr.t Research/Influential Article (% by Technology Year Company
Ind.)
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1986 |Silicon”, Fahey and Plummer Rev Mod Phys 1% Intel; AMD; GF;
61 (1989) 289 (31%) | sub-100 nm MPU Freescale; Ti;
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1994 |dielectric”, Ma, IEEE Trans on Electron Dev (25%) Corp
45 (1998) 680
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* Citation trajectories peak about time of product
iIntroduction
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Semiconductors Enable IT Energy Efficiency
Server and Data Center Energy Savings

120

s U.S. energy consumption by
servers and data centers could 100
nearly double again in five years.
80

s Through energy-smart
technologies, it could be halved! ©°

40

20
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Semiconductors Enable Broad Energy Efficiency
Save 1.2 Trillion kWh, Reduce CO2 emissions by 733 MMT in 2030
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i in
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*Note: Accelerated investments in semiconductor-related technologies stimulated by smart policies. SEMICONDUCTOR
Source: American Council for an Energy-Efficient Economy, “Semiconductor Technologies: The @ S I A ‘ INDUSTRY
ASSOCIATION

Potential to Revolutionize U.S. Energy Productivity,” (2009).
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* National Academies Review of NNI
Statement of Task

= Examine the role of the NNI in maximizing opportunities to

transfer selected technologies to the private sector, provide
an assessment of how well the NNI is carrying out this
role, and suggest new mechanisms to foster transfer of
technologies and improvements to NNI operations in this
area where warranted,;

Assess the suitability of current procedures and criteria for
determining progress towards NNI goals, suggest
definitions of success and associated metrics, and provide
advice on those organizations (government or non-
government) that could perform evaluations of progress;

Review NNI's management and coordination of
nanotechnology research across both civilian and military
federal agencies.
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ﬁ Metrics of economic impact of nanotechnology

= Nano research patents and publications (resulting

from govt funding) highly cited by industry
# of jobs (tracked via online job sites)
“nano producer” growth

“nano user” growth

Why? How? When?
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